
Getting started
with jQuery

Gill Cleeren

@gillcleeren

Hi, I’m Gill!

Gill Cleeren
MVP and Regional Director
.NET Architect @ Ordina
Trainer & speaker

@gillcleeren

gill@snowball.be

I’m a Pluralsight author!

• Courses on Windows 8, social and HTML5

• http://gicl.me/mypscourses

http://gicl.me/mypscourses
http://gicl.me/mypscourses
https://twitter.com/pluralsight

What we’ll be looking at...
• Hello jQuery!!
• The 3 jQuery fundamentals
• Creating and manipulating elements
• Working with events
• Built-in animations and effects
• Talking to the server with Ajax
• Working with WebForms and MVC
• jQuery UI
• jQuery plugins
• Using the CDN

Throughout the session...

• You’ll see some

• Goal: show a particular place where jQuery
really stands out

HELLO JQUERY!

Hello jQuery!
• jQuery is

– Most popular, cross-browser JavaScript library
– Focusing on making client-side scripting of HTML simpler

• Easy navigating the DOM
• Handling events
• Working with Ajax

– Open-source, first released in 2006
– Current release is 1.11 and 2.1

• Same API
• 2.X branch doesn’t support IE 6, 7 and 8

– Recommended to use 1.X for public sites

Why jQuery?
• Many JavaScript frameworks try bending the language out of its natural

form
• jQuery aims at leveraging CSS, HTML and JavaScript
• Advantages

– Lightweight
– Easy to learn using familiar CSS syntax and intuitive

– Many plugins available
– Easy to extend and compatible
– Support from Microsoft
– Rich community

$('#something').hide().css('background', 'red').fadeIn();

You are not alone!
Many LARGE companies use jQuery for their sites, including:

Microsoft and jQuery
• Included with Visual Studio

– MVC
– WebForms

• Microsoft is/was contributor to jQuery
– Created templating, data linking and

globalization (2010)
– Not actively maintained now though

• CDN from Microsoft

Script, don’t get in my way!
• jQuery helps us writing Unobtrusive JavaScript code
• You don’t want to mingle style with HTML
• Why would you want to mingle behavior with HTML?

• This will become a heavy job without jQuery!

<script type="text/javascript">
 window.onload = function() {
 document.getElementById('testButton').onclick = function() {
 document.getElementById('xyz').style.color = 'red';
 };
 };
</script>

THE 3 JQUERY FUNDAMENTALS

Fundamentals #1: $
• $ function (aka jQuery() function) returns

– A JavaScript object containing an array of DOM elements

– In the order they were found in the document

– Matching a specified selector (for example a CSS selector)

– Known to mankind as a wrapper or wrapped set

• It returns the same group of elements, can be chained

$("div.someClass").show();

$("div.someClass").show().addClass("SomeOtherClass");

Fundamental #2: the ready handler
• Script execution should wait until DOM elements are ready

– You say: window.onload?
– Sadly, this waits for everything to be loaded, including images etc
– Script execution is too late

• Instead, we need to wait only until the DOM tree is created
– Can be difficult in cross-browser situations
– Easy-peasy with jQuery

$(document).ready(function() {
 $("div.someClass").show();
});

$(function() {
 $("div.someClass").show();
});

Fundamental #3: selectors

• At the core of jQuery lies its selector engine

• $() is heavily overloaded

– Making a selection

– Creating new HTML elements

Fundamental #3: selectors

• Most basic: CSS selectors

– Can be combined

• Child selector

• Attribute selector

$("p a.someClass")

$("p a.someClass, div")

$("ul.someList > li > a")

$("a[href*='http://www.snowball.be']")

$("span[class^='some']")

$("span[class]")

Fundamental #3: selectors

• Position

• Psuedo-classes (CSS filter selectors & custom
selectors)

$("a:first")

$("div:even")

$("table#someTable td:first-child")

$("input:checked")

$(":password")

$("input:not(:checked)")

More selectors

• Full list at http://www.w3.org/TR/css3-selectors/
Pattern Meaning

* any element

E an element of type E

E[foo] an E element with a "foo" attribute

E[foo^="bar"]
an E element whose "foo" attribute value begins
exactly with the string "bar"

E:nth-child(n) an E element, the n-th child of its parent

E:first-child an E element, first child of its parent

E:empty
an E element that has no children (including text
nodes)

E:link
E:visited

an E element being the source anchor of a hyperlink
of which the target is not yet visited (:link) or already
visited (:visited)

E > F an F element child of an E element

E + F an F element immediately preceded by an E element

DEMO
Selecting elements using selectors

Fundamental #3.1: creating elements

• $(‘...’) selects an element <> $(‘’) creates an
element

 $(function(){
 $('', {
 src: 'someImage.jpg',
 alt: 'Some nice image'
 })
 .appendTo('body');

 $(function(){
 $('<div>I’m off</div>')
 .appendTo('body');

DEMO
Creating elements using $

CREATING AND MANIPULATING
ELEMENTS

Working with the result of $

• Once we have a wrapped set, we can go wild
with it!

– Handle the set as a whole

– Work with individual elements

Working with the result of $
• A wrapped set is like an array of elements, normal

“array operations” can be done on it
– Check the size

– Access an indiviual element

– Loop over the elements

$('a').size();

$('a') [0];

$('a').get(0);

$('img').each(function(n){
 this.alt='image['+n+']';
});

Working with the result of $

• Set operations (continued)
– Add and remove elements

– Filter elements

• Remember that we are always returning the set
– Chaining is always possible!

$("a[class]").add("a[href]");

$("a").filter("[href^='http://']");

$("a[class]")
 .add("a[href]")
 .filter("[href^='http://']")
 ...;

DEMO
Working with the set

Attributes
• When we want to change how an element looks, we

can change its attributes

• jQuery provides the attr() method
– 2 variations based on number and types of parameters

• Read a specified property from first element in wrapped set

• Set a property on all elements in the wrapped set (0 or more)

$("#myImage").attr("alt");

$('#myImage').attr('alt', 'Me in Paris');

Attributes (2)

• jQuery makes it easy to apply and remove CSS
classes

– addClass(), removeClass(), toggleClass() and
hasClass()

• Changing indiviual CSS elements is supported

– css() can be used to get or set CSS on an element

$('#mydiv').css("background-color","yellow");

Working with elements

• html() can be used to get or set the content of
an element

– text() can retrieve combined textual content of all

elements, including their children

• If the elements are form elements, we need to
use val()

$('input:checkbox:checked').val();

$('#mydiv').html();

DEMO
Working with attributes

WORKING WITH EVENTS

Events: A bit of history
• Once upon a time, a browser called Netscape introduced an event

model: DOM Level 0 Event Model
– Creates event handlers as references to a function on a property
– Not what we need if we want to create Unobtrusive JavaScript
– Only one event handler per element for specific event

• Only got standardized until DOM Level 2 Event Model
– Based on a system of event listeners (addEventListener)
– IE decided to go its own way (attachEvent)

• Using event was a real mess because of browser dependencies
• jQuery comes to the rescue

jQuery events
• on() is where it all starts

– Binds a function to any event on any DOM element
– off() can be used to unbind a function from an event
– Replaces the bind() and unbind()

– Works in any browser, jQuery hides the details for us
– Possible to bind more than one event handler for an event on one

element

• one() removes itself after event handler executed

$('#myimg')
 .on('click',
 function(event){alert(Hello World!');}
);

DEMO
Events

BUILT-IN ANIMATIONS AND EFFECTS

Animations and effects
• Core jQuery has some basic effects

– More are available in jQuery UI
– Should be used with caution!

• Most basic ‘animation’ is hiding/showing an element
– hide(): sets display:none on the element
– show(): sets display to inline/block
– toggle(): sets visible is hidden and vice-versa

• Methods are overloaded, accepting
– Speed
– Callback

Animations and effects (2)

• Elements can also be gradually added/removed
– slideDown() and slideUp()

• Fading in is supported as well
– fadeIn() and fadeOut()

• animate() is mother of all animations
– Using ‘target values’ for style properties, jQuery will

animate the transition

$('.someClass').animate({opacity:0.25},'slow');

DEMO
Animations

TALKING TO THE SERVER WITH AJAX

Ajax in the past
• When we were all young (in 1998), Microsoft introduced the ability to

perform asynchronous requests from script (ActiveX)
• Later, other browsers implemented a standard, the XMLHttpRequest

– IE6 uses an ActiveX object

• Result is that we need to do checks

• Again... jQuery to the rescue!

if(window.ActiveXObject) {
 xhr = new ActiveXObject("Microsoft.XMLHTTP");
 }
else if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
}

Ajax with jQuery
• Basic functionality to load content from a server-side resource:

– load()
• url
• parameters: data to be passed (string, object...)

– If provided, a POST is executed, otherwise a GET

• callback (optional)

• Next to load, we can also use $.get()/$.getJson() or $.post()

$('#someDiv')
 .load('test.html',
 function() {
 alert('Load was performed.');
 });

DEMO
Basic Ajax request with load()

Ajax with jQuery
• If we need all control over the Ajax request we can get:

– $.ajax()
• options: defines an object containing all the properties for the Ajax

request

• List of options is huge!
– $.ajaxSetup

• options: defines an object containing all the properties for the Ajax
request, becoming the default for Ajax requests

$.ajaxSetup({
 type: 'POST',
 timeout: 5000,
 dataType: 'html'
});

Ajax with jQuery
• Throughout the Ajax request, we can get feedback

– Local events from the $.ajax() call (callbacks)
– Global events

• Are broadcast to every element within the DOM, can be
attached on any element
– ajaxStart
– ajaxSend
– ajaxSuccess
– ajaxError
– ajaxComplete

DEMO
More control with ajax()

WORKING WITH WEBFORMS AND MVC

jQuery Ajax, ASP.NET MVC and
WebForms

• jQuery can work in harmony with ASP.NET
MVC and WebForms

– Sample ajax() call for WebForms

 $.ajax({
 type: "post",

 contentType: "application/json; charset=utf-8",
 dataType: "json",
 url: "/Default.aspx/AddTask",
 data: JSON.stringify(dto)
});

DEMO
ASP.NET WebForms with jQuery

DEMO
ASP.NET MVC with jQuery

JQUERY UI

jQuery UI
• Huge extension of jQuery, providing more UI capabilities
• Contains number of UI features we’d logically need
• Includes

– Effects: more advanced than core effects
– Interactions: drag and drop
– Widgets (aka controls): date picker...
– All can be themed

• Code included in jquery-ui.js

jQueryUI Themes

• Themes come with the download

– It’s *never* going to be OK for the marketing guys!

– Options

• Use it anyway

• Use the ThemeRoller

• Tweak a default or custom-created one

• Create one yourself (Warning: the CSS is quite large)

Effects
• jQuery core contains some basic effects
• Based on the effect(type, options, speed, callback) method

– Has several animation types such as puff, highlight and shake (even
explode exists)

– Also allows to do animations with colors (not possible with animate())
• backgroundColor, color...

• Visibility methods (show()...) are extended
• Class methods (addClass()...) are extended
• position() method is added for

advanced positioning

$('#someElement').position({
 my: 'top center',
 at: 'bottom right',
 of: '#someOtherElement'});

DEMO
Effects

Interactions
• Interactions focus on allowing users to directly interact with

elements, which isn’t possible with standard HTML controls
– They add advanced behaviors to our pages related to mouse

interactions

• Available interactions:
– Dragging
– Dropping
– Sorting
– Resizing
– Selecting

Dragging

• Easy-peasy (again) with jQuery

• draggable() is your friend (heavily overloaded
once again)

– Allows making elements draggable, possible with
options (opacity...)

$('#someDiv').draggable();

DEMO
Dragging and drop

Widgets: controls on steroids
• New controls (based on existing ones)
• Contents

– Buttons
– Sliders
– Progress bars
– Autocompletion
– Date picker
– Tabs
– Accordion
– Dialog box

Date picker

• Have you noticed that entering dates is a
difficult thing for end users? Some will always
get it wrong!

• jQuery UI’s DatePicker can help

– datepicker() creates the control for you

– Has numerous options, mostly defaults will do

DEMO
Widgets in action

 JQUERY PLUGINS

Something missing in jQuery?

• 2 options:
– Use an existing plugin

• Google code (code.google.com): going to be retired soon!

• GitHub

• jQuery plugin (not active anymore)

– Write a plugin yourself
• Custom utility function

• Create wrapper functions

DEMO
Using a plugin

Writing your own plugins
• Write a plugin to add it yourself!

– Possible to write your own utility functions and wrapper
methods

• Creating new wrapper methods:
– Add the method as a property on the fn object in the $

namespace

$.fn.wrapperFunctionName = function(params){function-body};

(function($){
 $.fn.setToRed = function() {
 return this.css('color','red');
 };
})(jQuery);

DEMO
Writing a plugin

USING THE CDN

Where to get your stuff?
• Use a CDN?

– Microsoft
– Google

• Put scripts locally as well with a fallback mechanism
 <script type="text/javascript"
 src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js">
</script>
<script type="text/javascript">
if (typeof jQuery == 'undefined')
{
 document.write(unescape("%3Cscript src='/Scripts/jquery-1.4.2.min.js'
 type='text/javascript'%3E%3C/script%3E"));
}
</script>

http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js
http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js
http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js

Summary
• Where does all the (l) for jQuery come from?

– Light-weight library that uses JavaScript as JavaScript,
relying on CSS

– Cross-browser compatible, hides the details (ready
handler)

– Easy eventing model
– Can work with MVC & WebForms
– Easily extensible to fit your needs, tons of plugins already

available

So I hope you now say too...

THANKS!

Q&A

Getting started
with jQuery

Gill Cleeren

@gillcleeren

